Published in

MDPI, Sensors, 18(23), p. 7758, 2023

DOI: 10.3390/s23187758

Links

Tools

Export citation

Search in Google Scholar

Attosecond-Level Delay Sensing via Temporal Quantum Erasing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Traditional Hong-Ou-Mandel (HOM) interferometry, insensitive to photons phase mismatch, proved to be a rugged single-photon interferometric technique. By introducing a post-beam splitter polarization-dependent delay, it is possible to recover phase-sensitive fringes, obtaining a temporal quantum eraser that maintains the ruggedness of the original HOM with enhanced sensitivity. This setup shows promising applications in biological sensing and optical metrology, where high sensitivity requirements are coupled with the necessity to keep light intensity as low as possible to avoid power-induced degradation. In this paper, we developed a highly sensitive single photon birefringence-induced delay sensor operating in the telecom range (1550 nm). By using a temporal quantum eraser based on common path Hongr-Ou-Mandel Interferometry, we were able to achieve a sensitivity of 4 as for an integration time of 2·104 s.