Published in

American Institute of Physics, The Journal of Chemical Physics, 21(158), 2023

DOI: 10.1063/5.0151856

Links

Tools

Export citation

Search in Google Scholar

Geometric phase in coupled cluster theory

Journal article published in 2023 by David M. G. Williams ORCID, Eirik F. Kjønstad ORCID, Todd J. Martínez ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

It has been well-established that the topography around conical intersections between excited electronic states is incorrectly described by coupled cluster and many other single reference theories (the intersections are “defective”). Despite this, we show both analytically and numerically that the geometric phase effect (GPE) is correctly reproduced upon traversing a path around a defective excited-state conical intersection (CI) in coupled cluster theory. The theoretical analysis is carried out by using a non-Hermitian generalization of the linear vibronic coupling approach. Interestingly, the approach qualitatively explains the characteristic (incorrect) shape of the defective CIs and CI seams. Moreover, the validity of the approach and the presence of the GPE indicate that defective CIs are local (and not global) artifacts. This implies that a sufficiently accurate coupled cluster method could predict nuclear dynamics, including geometric phase effects, as long as the nuclear wavepacket never gets too close to the conical intersections.