Published in

American Institute of Physics, Applied Physics Letters, 10(123), 2023

DOI: 10.1063/5.0154878

Links

Tools

Export citation

Search in Google Scholar

Gate leakage modeling in lateral <b> β </b>-Ga2O3 MOSFETs with Al2O3 gate dielectric

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We present a detailed model of the static and dynamic gate leakage current in lateral β-Ga2O3 MOSFETs with an Al2O3 gate insulator, covering a wide temperature range. We demonstrate that (i) in the DC regime, current originates from Poole–Frenkel conduction (PFC) in forward bias at high-temperature, while (ii) at low temperature the conduction is dominated by Fowler–Nordheim tunneling. Furthermore, (iii) we modeled the gate current transient during a constant gate stress as effect of electron trapping in deep levels located in the oxide that inhibits the PF conduction mechanism. This hypothesis was supported by a TCAD model that accurately reproduces the experimental results.