Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Systems, 9(11), p. 456, 2023

DOI: 10.3390/systems11090456

Links

Tools

Export citation

Search in Google Scholar

BiGTA-Net: A Hybrid Deep Learning-Based Electrical Energy Forecasting Model for Building Energy Management Systems

Journal article published in 2023 by Dayeong So, Jinyeong Oh, Insu Jeon, Jihoon Moon ORCID, Miyoung Lee ORCID, Seungmin Rho ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The growth of urban areas and the management of energy resources highlight the need for precise short-term load forecasting (STLF) in energy management systems to improve economic gains and reduce peak energy usage. Traditional deep learning models for STLF present challenges in addressing these demands efficiently due to their limitations in modeling complex temporal dependencies and processing large amounts of data. This study presents a groundbreaking hybrid deep learning model, BiGTA-net, which integrates a bi-directional gated recurrent unit (Bi-GRU), a temporal convolutional network (TCN), and an attention mechanism. Designed explicitly for day-ahead 24-point multistep-ahead building electricity consumption forecasting, BiGTA-net undergoes rigorous testing against diverse neural networks and activation functions. Its performance is marked by the lowest mean absolute percentage error (MAPE) of 5.37 and a root mean squared error (RMSE) of 171.3 on an educational building dataset. Furthermore, it exhibits flexibility and competitive accuracy on the Appliances Energy Prediction (AEP) dataset. Compared to traditional deep learning models, BiGTA-net reports a remarkable average improvement of approximately 36.9% in MAPE. This advancement emphasizes the model’s significant contribution to energy management and load forecasting, accentuating the efficacy of the proposed hybrid approach in power system optimizations and smart city energy enhancements.