Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Materials, 17(16), p. 5777, 2023

DOI: 10.3390/ma16175777

Links

Tools

Export citation

Search in Google Scholar

A Novel Nickel-Plated Carbon Fiber Insert in Aluminum Joints with Thermoplastic ABS Polymer or Stainless Steel

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

New types of hybrid aluminum joints: Al-acrylonitrile butadiene styrene (ABS) carbon fiber reinforced thermoplastic polymer (CFRTP) designated Al/Ni-CFP/ABS, and Al-18-8 Stainless steel, Al/Ni-CFP/18-8, by Ni-plated carbon fiber plug (Ni-CFP) insert not before seen in the literature have been fabricated. The goal is to take advantage of extremely high ~6 mm CF surface area for high adhesion, to enhance the safety level of aircraft and other parts. This is without fasteners, chemical treatment, or glue. First, the CFP is plated with Ni. Second, the higher melting point half-length is spot welded to the CFP; and third, the remaining half-length is fabricated. The ultimate tensile strength (UTS) of Al/Ni-CFP/ABS was raised 15 times over that of Al/ABS. Normalized cUTS according to CFP cross-section by Rule of Mixtures for cAl/Ni-CFP/18-8 was raised over that of cAl/Ni-CFP/18-8 from 140 to 360 MPa. Resistance energy to tensile deformation, UT, was raised 12 times from Al/ABS to Al/Ni-CFP/ABS, and 6 times from Al/CFP/18-8 to Al/Ni-CFP/18-8. Spot welding allows rapid melting followed by rapid solidification for amorphous metal structures minimizing grain boundaries. The Ni-coating lowers or counters the effects of brittle Al4C3 and FexC formation at the interface and prevents damage by impingement to CFs, allowing joints to take on more of the load.