Dissemin is shutting down on January 1st, 2025

Published in

Wiley, European Journal of Organic Chemistry, 29(26), 2023

DOI: 10.1002/ejoc.202300498

Links

Tools

Export citation

Search in Google Scholar

Photochemical Bromination of 2,5‐Dimethylbenzoic Acid as Key Step of an Improved Alkyne‐Functionalized Blue Box Synthesis**

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCyclobis(paraquat‐p‐phenylene), also known as “blue box”, is a highly electron‐deficient macrocycle, widely used as a molecular receptor for small electron‐rich molecules. Inserting a reactive functional group onto the molecular structure of this cyclophane is paramount for its inclusion into complex architectures. To this aim, including an alkyne moiety would be ideal, because it can participate in click reactions. However, the synthesis of such alkyne‐functionalized cyclophane suffers from several drawbacks: the use of toxic and expensive CCl4, the need for high‐pressure reactors, and overall low yield. We have revised the existing synthesis of this cyclophane derivative bearing an alkyne moiety, to overcome all these limitations. In particular, photochemical radical bromination is adopted to obtain a sensitive intermediate. We demonstrated that the synthesized host molecule can be functionalized via click reactions and take part in radical‐radical interactions. Our work makes a key functionalized paraquat macrocycle more accessible, facilitating the development of novel redox‐responsive systems.