Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 15(122), 2023

DOI: 10.1063/5.0141039

Links

Tools

Export citation

Search in Google Scholar

Magnetic excitations in infinite-layer LaNiO2

Journal article published in 2023 by Yajun Zhang ORCID, Xu He ORCID, Philippe Ghosez ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The observation of superconductivity in infinite-layer nickelates provides an appealing new platform to explore a superconducting mechanism. Rationalizing the ground state magnetic order and spin dynamics in undoped compounds are the foundation for understanding the superconducting mechanism. Here, magnetic properties of infinite-layer LaNiO2 are investigated and compared with cuprate analog CaCuO2 by combining first-principles and spin-wave theory calculations. We reveal that LaNiO2 exhibits quasi-two-dimensional (2D) antiferromagnetic (AFM) order that mimics that of cuprate superconductors. Moreover, the electronic origin of the quasi-2D AFM state and the simulated dispersion of magnetic excitations in LaNiO2 show strong resemblance to that of NdNiO2. The establishment of a direct connection with the cuprates from the electron, orbital, and spin degrees of freedom provides solid theoretical basis to elucidate the origin of superconductivity in infinite-layer nickelates.