Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, Advanced Science, 17(10), 2023

DOI: 10.1002/advs.202206772

Links

Tools

Export citation

Search in Google Scholar

High‐Throughput Design of Magnetocaloric Materials for Energy Applications: MM´X alloys

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMagnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor‐cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high‐throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M’ = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.