Published in

Wiley, Angewandte Chemie, 10(136), 2024

DOI: 10.1002/ange.202318557

Wiley, Angewandte Chemie International Edition, 10(63), 2024

DOI: 10.1002/anie.202318557

Links

Tools

Export citation

Search in Google Scholar

Ligand‐Induced Chirality in ClMBA<sub>2</sub>SnI<sub>4</sub> 2D Perovskite**

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractChiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead‐free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead‐free chiral perovskite, namely (R/S−)ClMBA2SnI4 (ClMBA=1‐(4‐chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465–530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self‐trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead‐free 2D chiral perovskites confirms the role of the symmetry‐breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure‐property correlation in 2D chiral perovskites.