Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Bioinformatics, 3(40), 2024

DOI: 10.1093/bioinformatics/btae116

Links

Tools

Export citation

Search in Google Scholar

PySNV for complex intra-host variation detection

Journal article published in 2024 by Liandong Li, Haoyi Fu ORCID, Wentai Ma, Mingkun Li ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Motivation Intra-host variants refer to genetic variations or mutations that occur within an individual host organism. These variants are typically studied in the context of viruses, bacteria, or other pathogens to understand the evolution of pathogens. Moreover, intra-host variants are also explored in the field of tumor biology and mitochondrial biology to characterize somatic mutations and inherited heteroplasmic mutations. Intra-host variants can involve long insertions, deletions, and combinations of different mutation types, which poses challenges in their identification. The performance of current methods in detecting of complex intra-host variants is unknown. Results First, we simulated a dataset comprising 10 samples with 1869 intra-host variants involving various mutation patterns and benchmarked current variant detection software. The results indicated that though current software can detect most variants with F1-scores between 0.76 and 0.97, their performance in detecting long indels and low frequency variants was limited. Thus, we developed a new software, PySNV, for the detection of complex intra-host variations. On the simulated dataset, PySNV successfully detected 1863 variant cases (F1-score: 0.99) and exhibited the highest Pearson correlation coefficient (PCC: 0.99) to the ground truth in predicting variant frequencies. The results demonstrated that PySNV delivered promising performance even for long indels and low frequency variants, while maintaining computational speed comparable to other methods. Finally, we tested its performance on SARS-CoV-2 replicate sequencing data and found that it reported 21% more variants compared to LoFreq, the best-performing benchmarked software, while showing higher consistency (62% over 54%) within replicates. The discrepancies mostly exist in low-depth regions and low frequency variants. Availability and implementation https://github.com/bnuLyndon/PySNV/.