Published in

Wiley, Advanced Energy Materials, 2024

DOI: 10.1002/aenm.202400163

Links

Tools

Export citation

Search in Google Scholar

Fast Room‐Temperature Mg‐Ion Conduction in Clay‐Like Halide Glassy Electrolytes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe discovery of mechanically soft solid‐state materials with fast Mg‐ion conduction is crucial for the development of solid‐state magnesium batteries. In this paper, novel magnesium gallium halide compounds are reported that achieve high ionic conductivity of 0.47 mS cm−1 at room temperature. These Mg‐ion conductors obtained by ball milling Mg and Ga salts exhibit clay‐like mechanical properties, enabling intimate contact at the electrode–electrolyte interface during battery cycling. With a combination of experimental and computational analysis, this study identifies that the soft‐clay formation is induced by partial anion exchange during milling. This partial anion exchange creates undercoordinated magnesium ions in a chlorine‐rich environment, yielding fast Mg‐ion conduction. This work demonstrates the potential of clay‐like halide electrolytes for all‐solid‐state magnesium batteries, with possible further extension to other multivalent battery systems.