Published in

ECS Meeting Abstracts, 2(MA2023-01), p. 523-523, 2023

DOI: 10.1149/ma2023-012523mtgabs

Links

Tools

Export citation

Search in Google Scholar

Electrophoretic Deposition of Chitosan as Synthetic SEI for Silicon Anode: A Model System Investigation

Journal article published in 2023 by Koffi Pierre Yao ORCID, Rownak Jahan Mou ORCID, Sattajit Barua
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The cycling performance of high-energy silicon (Si) based lithium-ion (Li-ion) battery is greatly hindered by the instability of the solid electrolyte interphase (SEI). Large volume change of Si during (de)-lithiation causes continuous cracking and re-formation of the SEI on the anode surface, eventually resulting in loss of Li inventory and extensive consumption of electrolyte. Our work aims to devise, ex situ, an artificial polymeric SEI that retains its integrity against the large volume expansion of Si (~300%) during lithiation, passivates the anode surface, and thus prolongs the cycling and calendar life of Si-based anodes. Electrophoretic deposition (EPD) was used to coat model silicon thin film surfaces with a layer of chitosan, an ionically conductive cationic polymer, with and without the addition of CH3COOLi in the precursor solution. Morphological study of the coated surface at nano and macroscale via AFM-nanoIR and SEM-EDX show CH3COOLi promotes conformal electrodeposition of chitosan. Electrochemical testing shows a boost in capacity retention and lower charge transfer resistance in the presence of the chitosan synthetic SEI. XPS and ATR-FTIR spectroscopy suggest that CH3COOLi caps the -NH2 group of the deposited chitosan via an amidation reaction which suppresses excess electroreduction of the cell electrolyte. Our work provides a pathway for controlling the chemistry and properties of the SEIs in batteries.