Published in

The Electrochemical Society, Journal of The Electrochemical Society, 4(171), p. 040546, 2024

DOI: 10.1149/1945-7111/ad3ec4

Links

Tools

Export citation

Search in Google Scholar

Unraveling Morphology and Chemistry Dynamics in Fluoroethylene Carbonate Generated Silicon Anode Solid Electrolyte Interphase Across Delithiated and Lithiated States: Relative Cycling Stability Enabled by an Elastomeric Polymer Matrix

Journal article published in 2024 by Rownak J. Mou ORCID, Sattajit Barua ORCID, Daniel P. Abraham ORCID, Koffi P. C. Yao ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The silicon solid electrolyte interphase (SEI) faces cyclical cracking and reconstruction due to the ∼350% volume expansion. Understanding the SEI dynamic morphology and chemistry evolution from delithiated to lithiated states is thereby paramount to engineering a stable Si anode. Fluoroethylene carbonate (FEC) is a preferred additive with widely demonstrated enhancement of the Si cycling. Thus, insights into the dynamics of the FEC-SEI may provide hints toward engineering the Si interface. Herein, complementary ATR-FTIR, AFM, tip IR, and XPS probing reveal the presence of an elastomeric polycarbonate-like matrix in the FEC-generated SEI which is absent from the FEC-free SEI. Adding FEC to the baseline 1 M LiPF6 in EC:EMC (1:1) electrolyte promotes formation of a thinner and more conformal SEI, and subdues morphology and chemistry changes between consecutive half-cycles. From AFM, morphological stabilization of the FEC-SEI occurs earlier. Furthermore, conventional SEI biproducts such as Li2CO3 and LiEDC appear in reduced quantities in the FEC-SEI implying a reduced quantity of Li-consuming species. The thin polymeric FEC-SEI enables deeper (de)lithiation of silicon. In conclusion, the enhanced mechanical compliance, chemical invariance, and reduced Li inventory consumption of the FEC-SEI are logically the key features underlying the Si cycling enhancement by FEC.