Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Machines, 10(11), p. 958, 2023

DOI: 10.3390/machines11100958

Links

Tools

Export citation

Search in Google Scholar

Detection of Inter-Turn Short Circuits in Induction Motors under the Start-Up Transient by Means of an Empirical Wavelet Transform and Self-Organizing Map

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Due to the importance of induction motors in a wide variety of industrial processes, it is crucial to properly identify abnormal conditions in order to avoid unexpected stops. The inter-turn short circuit (ITSC) is a very common failure produced with electrical stresses and affects induction motors (IMs), leading to catastrophic damage. Therefore, this work proposes the use of the empirical wavelet transform to characterize the time frequency behavior of the IM combined with a self-organizing map (SOM) structure to perform an automatic detection and classification of different severities of ITSC. Since the amount of information obtained from the empirical wavelet transform is big, a genetic algorithm is implemented to select the modes that allow a reduction in the quantization error in the SOM. The proposed methodology is applied to a real IM during the start-up transient considering four different fundamental frequencies. The results prove that this technique is able to detect and classify three different fault severities regardless of the operation frequency.