Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, Advanced Science, 19(10), 2023

DOI: 10.1002/advs.202300406

Links

Tools

Export citation

Search in Google Scholar

Singlet Fission‐Based High‐Resolution X‐Ray Imaging Scintillation Screens

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractX‐ray imaging technology is critical to numerous different walks of daily life, ranging from medical radiography and security screening all the way to high‐energy physics. Although several organic chromophores are fabricated and tested as X‐ray imaging scintillators, they generally show poor scintillation performance due to their weak X‐ray absorption cross‐section and inefficient exciton utilization efficiency. Here, a singlet fission‐based high‐performance organic X‐ray imaging scintillator with near unity exciton utilization efficiency is presented. Interestingly, it is found that the X‐ray sensitivity and imaging resolution of the singlet fission‐based scintillator are dramatically improved by an efficient energy transfer from a thermally activated delayed fluorescence (TADF) sensitizer, in which both singlet and triplet excitons can be efficiently harnessed. The fabricated singlet fission‐based scintillator exhibits a high X‐ray imaging resolution of 27.5 line pairs per millimeter (lp mm−1), which exceeds that of most commercial scintillators, demonstrating its high potential use in medical radiography and security inspection.