Published in

Wiley, Small, 46(19), 2023

DOI: 10.1002/smll.202300792

Links

Tools

Export citation

Search in Google Scholar

Design and Piezoelectric Energy Harvesting Properties of a Ferroelectric Cyclophosphazene Salt

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene‐based supramolecular ferroelectric [(PhCH2NH)6P3N3Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin‐film sample exhibits remnant polarization of 5 µC cm−2. Vector piezoresponse force microscopy (PFM) measurements indicated the presence of multiaxial polarization. Subsequently, flexible composites of [PMe]I are fabricated for piezoelectric energy harvesting applications using thermoplastic polyurethane (TPU) as the matrix. The highest open‐circuit voltages of 13.7 V and the maximum power density of 34.60 µW cm−2 are recorded for the poled 20 wt.% [PMe]I/TPU device. To understand the molecular origins of the high performance of [PMe]I‐based mechanical energy harvesting devices, piezoelectric charge tensor values are obtained from DFT calculations of the single crystal structure. These indicate that the mechanical stress‐induced distortions in the [PMe]I crystals are facilitated by the high flexibility of the layered supramolecular assembly.