Published in

Wiley, Advanced Healthcare Materials, 29(12), 2023

DOI: 10.1002/adhm.202301961

Links

Tools

Export citation

Search in Google Scholar

Mechanism of Action of Oxazoline‐Based Antimicrobial Polymers Against Staphylococcus aureus: In Vivo Antimicrobial Activity Evaluation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAntimicrobial‐resistant pathogens have reached alarming levels, becoming one of the most pressing global health issues. Hence, new treatments are necessary for the fight against antimicrobial resistance. Synthetic nanoengineered antimicrobial polymers (SNAPs) have emerged as a promising alternative to antimicrobial peptides, overcoming some of their limitations while keeping their key features. Herein, a library of amphiphilic oxazoline‐based SNAPs using cationic ring‐opening polymerization (CROP) is designed. Amphipathic compounds with 70% cationic content exhibit the highest activity against clinically relevant Staphylococcus aureus isolates, maintaining good biocompatibility in vitro and in vivo. The mechanism of action of the lead compounds against S. aureus is assessed using various microscopy techniques, indicating cell membrane disruption, while the cell wall remains unaffected. Furthermore, a potential interaction of the compounds with bacterial DNA is shown, with possible implications on bacterial division. Finally, one of the compounds exhibits high efficacy in vivo in an insect infection model.