Published in

American Institute of Physics, Applied Physics Letters, 26(122), 2023

DOI: 10.1063/5.0149658

Links

Tools

Export citation

Search in Google Scholar

Impact of fin aspect ratio on enhancement of external quantum efficiency in single AlGaN fin light-emitting diodes pixels

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Previously, we showed within a sub-micron fin shape heterojunction, as current density increases, the non-radiative Auger recombination saturates mediated by the extension of the depletion region into the fin, resulting in a droop-free behavior. Here, we investigate the dependence of the fin aspect ratio (height to width ratio) on external quantum efficiency (EQE) of single n-AlGaN fin/p-GaN heterojunctions. Fins are arranged in an array format varying in width from 3000 to 200 nm. In this architecture, an n-metal contact is interfaced with the non-polar side facet of the fin. At a fixed current density, as the aspect ratio increases from 0.2 to 3 (the fin width reduces), we systematically observe an increase in the ultraviolet (UV) excitonic emission of the AlGaN fin and a 7× enhancement in the EQE. We explain this phenomenon by conserving the volume of the carrier depletion region within a fin. As the fin gets thinner, the base area of the depletion volume shrinks, whereas its height increases within the fin. This geometrical advantage allows a 200 nm wide fin to operate at 1/3rd the current density compared to a 3000 nm wide fin while generating a UV emission with a comparable power of 1 μW. These findings show additional parameters that can be used for developing brighter light sources, including the shape and aspect ratio of a heterojunction at the micro- or nano-scale.