Published in

Springer, Cellulose, 16(30), p. 10313-10339, 2023

DOI: 10.1007/s10570-023-05491-3

Links

Tools

Export citation

Search in Google Scholar

Physico-chemical and pro-wound healing properties of microporous cellulosic sponge from Gleditsia triacanthos pods functionalized with Phytolacca americana fruit extract

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract This study aimed to exploit two invasive plant species to develop a novel, multifunctional, bioactive wound dressing based on a microporous cellulosic sponge (CS) from Gleditsia triacanthos pods and functionalizing them with Phytolacca americana fruit extract. The CS was functionalized, lyophilized, and characterized by Attenuated total reflectance–Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, contact angle, water absorption, and retention capacity. In addition, two parameters were evaluated in temporal dynamics: controlled release of phenolic compounds and antioxidant activities. The hemolytic index, blood clotting kinetics, lactate dehydrogenase release, and wound scratch assays proved their hemo- and biocompatibility, as well as their ability to promote cell proliferation and migration promoting-activity and to inhibit microbial growth. Furthermore, the obtained spongious material exhibited an anti-inflammatory effect by modulating the macrophages’ secretion profile of IL-6 and IL-10. In conclusion, the microporous cellulosic sponge obtained from G. triacanthos could be used as a vehicle to ensure the controlled release of bioactive principles with pro-wound healing activities extracted from invasive plants. Graphical abstract: