Published in

American Institute of Physics, The Journal of Chemical Physics, 17(158), 2023

DOI: 10.1063/5.0140110

Links

Tools

Export citation

Search in Google Scholar

Correlated factors for Li-ion migration in ionic conductors with the fcc anion sublattice

Journal article published in 2023 by Runxin Ouyang ORCID, Zhenming Xu ORCID, Hong Zhu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The development of solid-state electrolytes (SSEs) with high lithium ionic conductivities is critical for the realization of all-solid-state Li-ion batteries. Crystal structure distortions, Li polyhedron volumes, and anion charges in SSEs are reported to affect the energy landscapes, and it is paramount to investigate their correlations. Our works uncover the cooperative effect of lithium site distortions, anion charges, and lattice volumes on Li-ion migration energy barrier in superionic conductors of LiMS2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) and Li2MO3 (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni). Combined with the Least Absolute Shrinkage and Selection Operator analyses, the volume and Continuous symmetrical methods (CSMs) of Li tetrahedral (Tet) sites appear to have a larger effect on the manipulation of Ea for Li migration, compared to that of Li octahedral (Oct) sites, which is further confirmed by the results from the face-centered cubic (fcc) anion lattice model. For the Tet–Oct–Tet Li migration path, the CSM (the volume of Li site) has a negative (positive) correlation with Ea, while for the Oct–Tet–Oct Li migration paths, opposite correlations have been observed. The understanding of the correlation between site preference, anion charge, lattice volume, and structural distortion as well as the prediction model of Ea in terms of these three factors, namely, C–V–D model, could be useful for the design of solid-state electrolytes with lower activation energy.