Published in

Wiley, Advanced Functional Materials, 2023

DOI: 10.1002/adfm.202308238

Links

Tools

Export citation

Search in Google Scholar

Liquid Metal Microdroplet‐Initiated Ultra‐Fast Polymerization of a Stimuli‐Responsive Hydrogel Composite

Journal article published in 2023 by Jianhua Zhang, Jiahe Liao ORCID, Zemin Liu, Rongjing Zhang, Metin Sitti ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRecent advances in composite hydrogels achieve material enhancement or specialized stimuli‐responsive functionalities by pairing with a functional filler. Liquid metals (LM) offer a unique combination of chemical, electrical, and mechanical properties that show great potential in hydrogel composites. Polymerization of hydrogels with LM microdroplets as initiators is a particularly interesting phenomenon that remains in its early stage of development. In this work, an LM‐hydrogel composite is introduced, in which LM microdroplets dispersed inside the hydrogel matrix have dual functions as a polymerization initiator for a polyacrylic acid‐poly vinyl alcohol (PAA/PVA) network and, once polymerized, as passive inclusion to influence its material and stimuli‐responsive characteristics. It is demonstrated that LM microdroplets enable ultra‐fast polymerization in ≈1 min, compared to several hours by conventional polymerization techniques. The results show several mechanical enhancements to the PAA/PVA hydrogels with LM‐initiated polymerization. It is found that LM ratios strongly influence stimuli‐responsive behaviors in the hydrogels, including swelling and ionic bending, where higher LM ratios are found to enhance ionic actuation performance. The dual roles of LM in this composite are analyzed using the experimental characterization results. These LM‐hydrogel composites, which are biocompatible, open up new opportunities in future soft robotics and biomedical applications.