Published in

American Association for Cancer Research, Molecular Cancer Research, p. OF1-OF9, 2024

DOI: 10.1158/1541-7786.mcr-23-0810

Links

Tools

Export citation

Search in Google Scholar

PIGA Mutations and Glycosylphosphatidylinositol Anchor Dysregulation in Polyposis-Associated Duodenal Tumorigenesis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The pathogenesis of duodenal tumors in the inherited tumor syndromes familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) is poorly understood. This study aimed to identify genes that are significantly mutated in these tumors and to explore the effects of these mutations. Whole exome and whole transcriptome sequencing identified recurrent somatic coding variants of phosphatidylinositol N-acetylglucosaminyltransferase subunit A (PIGA) in 19/70 (27%) FAP and MAP duodenal adenomas, and further confirmed the established driver roles for APC and KRAS. PIGA catalyzes the first step in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Flow cytometry of PIGA-mutant adenoma-derived and CRISPR-edited duodenal organoids confirmed loss of GPI anchors in duodenal epithelial cells and transcriptional profiling of duodenal adenomas revealed transcriptional signatures associated with loss of PIGA. Implications: PIGA somatic mutation in duodenal tumors from patients with FAP and MAP and loss of membrane GPI-anchors may present new opportunities for understanding and intervention in duodenal tumorigenesis.