Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(14), 2024

DOI: 10.1038/s41598-024-52265-3

Links

Tools

Export citation

Search in Google Scholar

Drivers’ behavior confronting fixed and point-to-point speed enforcement camera: agent-based simulation and translation to crash relative risk change

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractUtilizing a novel microsimulation approach, this study evaluates the impact of fixed and average point-to-point Speed Enforcement Cameras (SEC) on driving safety. Using the SUMO software, agent-based models for a 6-km highway without exits or obstacles were created. Telematics data from 93,160 trips were used to determine the desired free-flow speed. A total of 13,860 scenarios were simulated with 30 random seeds. The ratio of unsafe driving (RUD) is the spatial division of the total distance travelled at an unsafe speed by the total travel distance. The study compared different SEC implementations under different road traffic and community behaviours using the Power Model and calculated crash risk changes. Results showed that adding one or two fixed SECs reduced RUD by 0.20% (0.18–0.23) and 0.57% (0.54–0.59), respectively. However, average SECs significantly lowered RUD by 10.97% (10.95–10.99). Furthermore, a 1% increase in telematics enforcement decreased RUD by 0.22% (0.21–0.22). Point-to-point cameras effectively reduced crash risk in all implementation scenarios, with reductions ranging from − 3.44 to − 11.27%, pointing to their superiority as speed enforcement across various scenarios. Our cost-conscious and replicable approach can provide interim assessments of SEC effectiveness, even in low-income countries.