Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Advances, 16(10), 2024

DOI: 10.1126/sciadv.adk2350

Links

Tools

Export citation

Search in Google Scholar

Carbon capture in polymer-based electrolytes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO 2 capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO 2 capture behavior and transport properties of these electrolytes after CO 2 capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO 2 capture. Quantitative 13 C NMR spectra collected at variable temperatures reveal that absorbed CO 2 exists as carbamates (RHNCOO or RR′NCOO ) and carbonate/bicarbonate (CO 3 2− /HCO 3 ). The transport properties of PEI and NOHM-I-PEI studied using 1 H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.