Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2(325), p. R154-R163, 2023

DOI: 10.1152/ajpregu.00293.2022

Links

Tools

Export citation

Search in Google Scholar

Stroke volume response during prolonged exercise depends on left ventricular filling: evidence from a β-blockade study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Prolonged moderate-intensity exercise leads to a progressive upward drift in heart rate (HR) that may compromise stroke volume (SV). Alternatively, the HR drift may be related to abated SV due to impaired ventricular function. The aim of this study was to examine the effects of cardiovascular drift on left ventricular volumes and in turn SV. Thirteen healthy young males completed two 60-min cycling bouts on a semirecumbent cycle ergometer at 57% maximal oxygen consumption (V̇o2max) either under placebo condition (CON) or after ingesting a small dose of β1-blockers (BB). Measurements of HR, end-diastolic volume (EDV), and end-systolic volume were obtained by echocardiography and used to calculate SV. Other variables such as ear temperature, skin temperature, blood pressure, and blood volume were measured to assess potential changes in thermoregulatory needs and loading conditions. HR drift was successfully prevented when using BB from min 10 to min 60 (128 ± 9 to 126 ± 8 beats/min, P = 0.29) but not in CON (134 ± 10 to 148 ± 10 beats/min, P < 0.01). Conversely, during the same time, SV increased by 13% when using BB (103 ± 9 to 116 ± 7 mL, P < 0.01), whereas it was unchanged in CON (99 ± 7 to 101 ± 9 mL, P = 0.37). The SV behavior was mediated by a 4% increase in EDV in the BB condition (164 ± 18 to 170 ± 18 mL, P < 0.01), whereas no change was observed in the CON condition (162 ± 18 to 160 ± 18 mL, P = 0.23). In conclusion, blocking HR drift enhances EDV and SV during prolonged exercise. These findings suggest that SV behavior is tightly related to filling time and loading conditions of the left ventricle.