Published in

SAGE Publications, The Canadian Association of Radiologists Journal, 2023

DOI: 10.1177/08465371231211278

Links

Tools

Export citation

Search in Google Scholar

Cinematic Rendering of Gastrointestinal Stromal Tumors: A Review of Current Possibilities and Future Developments

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Gastrointestinal stromal tumors (GISTs) are defined as CD117-positive primary, spindled or epithelioid, mesenchymal tumors of the gastrointestinal tract, omentum, or mesentery. While computed tomography (CT) is the recommended imaging modality for GISTs, overlap in imaging features between GISTs and other gastrointestinal tumors often make radiological diagnosis and subsequent selection of the optimal therapeutic approach challenging. Cinematic rendering is a novel CT post-processing technique that generates highly photorealistic anatomic images based on a unique lighting model. The global lighting model produces high degrees of surface detail and shadowing effects that generate depth in the final three-dimensional display. Early studies have shown that cinematic rendering produces high-quality images with enhanced detail by comparison with other three-dimensional visualization techniques. Cinematic rendering shows promise in improving the visualization of enhancement patterns and internal architecture of abdominal lesions, local tumor extension, and global disease burden, which may be helpful for lesion characterization and pretreatment planning. This article discusses and illustrates the application of cinematic rendering in the evaluation of GISTs and the unique benefit of using cinematic rendering in the workup of GIST with a specific emphasis on tumor characterization and preoperative planning.