Published in

Oxford University Press, EP Europace, 5(25), 2023

DOI: 10.1093/europace/euad040

Links

Tools

Export citation

Search in Google Scholar

Exploiting SMART pass filter deactivation detection to minimize inappropriate subcutaneous implantable cardioverter defibrillator therapies: a real-world single-centre experience and management guide

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aims The SMART Pass™ (SP) algorithm is a high-pass filter that aims to reduce inappropriate therapy (IT) in subcutaneous internal cardiac defibrillator (S-ICD), but SP can deactivate due to low amplitude sensed R waves or asystole. The association between IT and SP deactivation and management strategies were evaluated, hypothesizing SP deactivation increases the risk of IT and device re-programming, or lead/generator re-positioning could reduce this risk. Methods and results Retrospective single-centre audit of Emblem™ S-ICD devices implanted 2016 to 2020 utilizing health records and remote monitoring data. Cox regression models evaluated associations between SP deactivation and IT. A total of 348 patients (27 ± 16.6 months follow-up) were studied: 73% primary prevention. Thirty-eight patients (11.8%) received 83 shocks with 27 patients (7.8%) receiving a total of 44 IT. Causes of IT were oversensing (98%) and aberrantly conducted atrial fibrillation (2%). SP deactivation occurred in 32 of 348 patients (9%) and was significantly associated with increased risk of IT (hazard ratio 5.36, 95% CI 2.37-12.13). SP deactivation was due to low amplitude R waves (94%), associated with a higher defibrillation threshold at implant and presence of arrhythmogenic right ventricular cardiomyopathy. No further IT occurred 16 ± 15.5 months after corrective interventions, with changing the sensing vector being successful in 59% of cases. Conclusion To reduce the risk of IT, the cause of the SP deactivation should be investigated, and appropriate reprogramming, device, or lead modifications made. Utilizing the alert for SP deactivation and electrograms could pro-actively prevent IT.