Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Magnetic Resonance in Medicine, 5(91), p. 2044-2056, 2024

DOI: 10.1002/mrm.29980

Links

Tools

Export citation

Search in Google Scholar

Predicting dynamic, motion‐related changes in B<sub>0</sub> field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPurposeSubject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities.MethodsWe propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data.ResultsOur approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method.ConclusionIt is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.