Published in

American Society of Hematology, Blood Advances, 8(8), p. 1968-1980, 2024

DOI: 10.1182/bloodadvances.2024012563

Links

Tools

Export citation

Search in Google Scholar

Monocytes in leukapheresis products affect the outcome of CD19–targeted CAR T-cell therapy in patients with lymphoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract CD19–directed chimeric antigen receptor (CAR) T cells can induce durable remissions in relapsed/refractory large B-cell lymphomas (R/R LBCLs), but 60% of patients do not respond or relapse. Biological mechanisms explaining lack of response are emerging, but they are largely unsuccessful in predicting disease response at the patient level. Additionally, to maximize the cost-effectiveness of CAR T-cell therapy, biomarkers able to predict response and survival before CAR T-cell manufacturing would be desirable. We performed transcriptomic and functional evaluations of leukapheresis products in 95 patients with R/R LBCL enrolled in a prospective observational study, to identify correlates of response and survival to tisagenlecleucel and axicabtagene ciloleucel. A signature composed of 4 myeloid genes expressed by T cells isolated from leukapheresis products is able to identify patients with a very short progression-free survival (PFS), highlighting the impact of monocytes in CAR T-cell therapy response. Accordingly, response and PFS were also negatively influenced by high circulating absolute monocyte counts at the time of leukapheresis. The combined evaluation of peripheral blood monocytes at the time of leukapheresis and the 4-gene signature represents a novel tool to identify patients with R/R LBCL at very high risk of progression after CAR T-cell therapy and could be used to plan trials evaluating CAR T cells vs other novel treatments or allogeneic CAR T cells. However, it also highlights the need to incorporate monocyte depletion strategies for better CAR T production.