Published in

American Association for the Advancement of Science, Science Advances, 39(9), 2023

DOI: 10.1126/sciadv.adi0586

Links

Tools

Export citation

Search in Google Scholar

Revealing the impact of temperature in battery electrolytes via wavelength-resolved neutron imaging

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Understanding the limitations of electrolyte mixtures under extreme conditions is key to ensure reliable and safe battery performance. Among advanced characterization methods, time-of-flight neutron imaging (ToF-NI) is unique for its capability to map physicochemical changes of H-containing materials inside metallic casings and battery packs. The technique, however, requires long exposures in pulsed sources, which limits its applicability, particularly for analysis at low temperatures. To overcome these limitations, we use high–duty cycle ToF-NI at a continuous source, demonstrating its capability to expose physical and chemical changes of electrolytes due to variations in the overall molecular diffusion. The strategy described in this work reduces the exposure required and provides the baseline to study the thermal stability of electrolyte mixtures, from the proofing of state-of-the-art electrolyte mixtures up to their performance in batteries. This analysis and methodology apply to hydrogenous materials well beyond electrolytes for a wide range of applications.