Published in

American Association for Cancer Research, Molecular Cancer Therapeutics, 12(22), p. 1404-1412, 2023

DOI: 10.1158/1535-7163.mct-23-0126

Links

Tools

Export citation

Search in Google Scholar

In Vivo and In Vitro Efficacy of Trastuzumab Deruxtecan in Uterine Serous Carcinoma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Uterine serous carcinoma (USC) is a rare, biologically aggressive variant of endometrial cancer with a high recurrence rate and poor prognosis. HER2 overexpression (3+ positivity) by IHC and/or FISH ERBB2 gene amplification is detected in approximately one-third of patients with USC. Clinical trials incorporating trastuzumab with standard chemotherapy have recently demonstrated improved progression-free and overall survival in advanced-stage or recurrent USC that overexpresses HER2. However, a large number of patients with USC eventually developed resistance to trastuzumab. Trastuzumab deruxtecan (T-DXd) is a novel HER2-directed antibody–drug conjugate with a topoisomerase I inhibitor payload recently approved by the Food and Drug Administration (FDA) for multiple tumor indications. Here, we investigated the in vitro and in vivo efficacy of T-DXd in primary USC cell lines and xenografts with different HER2 expression. T-DXd–induced cell growth suppression in HER2-overexpressing cell lines in vitro, increased early and late apoptosis as assessed by annexin and propidium iodide staining, and, similarly to trastuzumab, T-DXd–induced significant antibody-dependent cellular cytotoxicity in the presence of peripheral blood lymphocytes. While negligible activity was detected against USC cell lines with low HER2 expression, T-DXd demonstrated significant bystander killing against USC tumors with low/negligible HER2 when such cells were admixed with HER2 3+ tumor cells in vitro. T-DXd showed tumor growth suppression in in vivo USC PDX models that overexpress HER2 at 3+ levels, prolonging survival when compared with controls, with minimal toxicity. Future clinical trials are warranted in patients with USC failing trastuzumab treatment.