Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, European Journal of Sport Science, 12(23), p. 2311-2320, 2023

DOI: 10.1080/17461391.2023.2230937

Links

Tools

Export citation

Search in Google Scholar

Contribution of different strength determinants on distinct phases of Olympic rowing performance in adolescent athletes

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTAerobic metabolism dominates Olympic rowing, but research on the relative contribution of strength and power demands is limited. This study aimed to identify the contribution of different strength determinants for distinct phases of rowing ergometer performance. The cross‐sectional analysis comprised of 14 rowing athletes (4 female, 10 male, age: 18.8 ± 3.0y, 16.9 ± 2.2y). Measurements included anthropometrics, maximal strength of leg press, trunk extension and flexion, mid‐thigh pull (MTP) and handgrip strength, VO2max, and a 2000 m time trial, where peak forces at the start, middle and end phase were assessed. Additionally, rate of force development (RFD) was assessed during the isometric leg press and MTP with intervals of 150, 350 ms and 150, 300 ms, respectively. Stepwise regression models for ergometer performance showed that the start phase was mainly explained by maximal trunk extension and RFD 300 ms of MTP (R2 = 0.91, p < 0.001) and the middle section by VO2max, maximal leg press strength and sitting height (R2 = 0.84, p < 0.001). For the end phase, a best fit was observed for trunk flexion, RFD 350 ms of leg press, body height and sex (R2 = 0.97 p < 0.001), whereas absolute VO2max, trunk flexion and sex explained variance over the entire 2000 m time trial (R2 = 0.98, p < 0.001). It appears that for the high acceleration in the start phase, force transmission through maximum strength for trunk extension is essential, while fast power production along the kinetic chain is also relevant. Additionally, the results support that maximal force complements the reliance on VO2max. Further intervention studies are needed to refine training recommendations.