Published in

Revista Brasileira de Engenharia Agrícola e Ambiental, 4(28), 2024

DOI: 10.1590/1807-1929/agriambi.v28n4e278566

Links

Tools

Export citation

Search in Google Scholar

Salicylic acid reduces harmful effects of salt stress in Tropaeolum majus

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

ABSTRACT Salt stress hampers the growth and physiology of nasturtium (Tropaeolum majus), due to biochemical, physiological, and anatomical disruptions. The application of salicylic acid stands as an alternative to alleviate the detrimental effects of salt stress, but studies on nasturtium are scarce. Thus, the aim of present study was to assess the effects of foliar application of salicylic acid on nasturtium cultivated under salt stress. The experiment followed a completely randomized design in a 3 x 3 factorial scheme, with 0 (no stress), 50 (moderate salt stress), and 100 (severe salt stress) mM of NaCl, and application of 0, 0.5, and 1 mM of salicylic acid, each with six replications. Growth (plant height, stem diameter, and number of leaves), gas exchange (stomatal conductance, photosynthesis, transpiration, internal CO2 concentration, intrinsic water use efficiency, instantaneous water use efficiency, and intrinsic carboxylation efficiency), as well as chlorophyll indices and chlorophyll a fluorescence were evaluated. Salt stress affected the variables analyzed in this study. The application of salicylic acid had a positive effect on mitigating the effects of severe salt stress, resulting in a significant increase in the number of leaves. The most effective dose was 1 mM, also leading to notable improvements in water use efficiency and photochemical efficiency. However, other combinations of salinity and salicylic acid reduced growth and gas exchange in nasturtium plants.