Published in

American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, 3(44), p. 690-697, 2024

DOI: 10.1161/atvbaha.123.320183

Links

Tools

Export citation

Search in Google Scholar

Nonpreferential but Detrimental Accumulation of Macrophages With Clonal Hematopoiesis-Driver Mutations in Cardiovascular Tissues—Brief Report

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is an acquired genetic risk factor for both leukemia and cardiovascular disease. It results in proinflammatory myeloid cells in the bone marrow and blood; however, how these cells behave in the cardiovascular tissue remains unclear. Our study aimed at investigating whether CHIP-mutated macrophages accumulate preferentially in cardiovascular tissues and examining the transcriptome of tissue macrophages from DNMT3A (DNA methyltransferase 3 alpha) or TET2 (Tet methylcytosine dioxygenase 2) mutation carriers. METHODS: We recruited patients undergoing carotid endarterectomy or heart surgeries to screen for CHIP mutation carriers using targeted genomic sequencing. Myeloid and lymphoid cells were isolated from blood and cardiovascular tissue collected during surgeries using flow cytometry. DNA and RNA extracted from these sorted cells were subjected to variant allele frequency measurement using droplet digital polymerase chain reaction and transcriptomic profiling using bulk RNA sequencing, respectively. RESULTS: Using droplet digital polymerase chain reaction, we detected similar variant allele frequency of CHIP in monocytes from blood and macrophages from atheromas and heart tissues, even among heart macrophages with and without CCR2 (C-C motif chemokine receptor 2) expression. Bulk RNA sequencing revealed a proinflammatory gene profile of myeloid cells from DNMT3A or TET2 mutation carriers compared with those from noncarriers. CONCLUSIONS: Quantitatively, CHIP-mutated myeloid cells did not preferentially accumulate in cardiovascular tissues, but qualitatively, they expressed a more disease-prone phenotype.