Published in

Springer, Annals of Hematology, 7(102), p. 1637-1644, 2023

DOI: 10.1007/s00277-023-05269-4

Links

Tools

Export citation

Search in Google Scholar

Relationship of paroxysmal nocturnal hemoglobinuria (PNH) granulocyte clone size to disease burden and risk of major vascular events in untreated patients: results from the International PNH Registry

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractParoxysmal nocturnal hemoglobinuria (PNH) is caused by acquired gene mutations resulting in deficiency of glycosylphosphatidylinositol (GPI)–anchored complement regulatory proteins on the surface of blood cells, leading to terminal complement–mediated intravascular hemolysis and increased risk of major adverse vascular events (MAVEs). Using data from the International PNH Registry, this study investigated the relationship between the proportion of GPI-deficient granulocytes at PNH onset and (1) the risk for MAVEs (including thrombotic events [TEs]) and (2) the following parameters at last follow-up: high disease activity (HDA); lactate dehydrogenase (LDH) ratio; fatigue; abdominal pain; and rates of overall MAVEs and TEs. A total of 2813 patients untreated at enrollment were included and stratified by clone size at PNH disease onset (baseline). At last follow-up, higher proportion of GPI-deficient granulocytes (≤ 5% vs. > 30% clone size) at baseline was associated with significantly increased HDA incidence (14% vs. 77%), mean LDH ratio (1.3 vs. 4.7 × upper limit of normal), and rates of MAVEs 1.5 vs. 2.9 per 100 person-years) and TEs (0.9 vs. 2.0 per 100 person-years). Fatigue was evident in 71 to 76% of patients regardless of clone size. Abdominal pain was more frequently reported with clone size > 30%. A larger clone size at baseline appears to indicate a greater disease burden and risk of TEs and MAVEs and may inform decision making among physicians managing PNH patients at risk of experiencing TEs or other MAVEs. ClinicalTrials.gov ID: NCT01374360.