Published in

American Institute of Physics, Applied Physics Letters, 11(123), 2023

DOI: 10.1063/5.0159560

Links

Tools

Export citation

Search in Google Scholar

Trap characterization of high-growth-rate laser-assisted MOCVD GaN

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A detailed study comparing defect incorporation between laser-assisted metal-organic chemical vapor deposition (MOCVD)-grown GaN and conventional low- and high-growth-rate MOCVD GaN was conducted. Using deep-level transient and optical spectroscopy, traps throughout the bandgap were characterized where traps were found at EC-0.25 eV, EC-0.57 eV, EC-0.72 eV, EC-0.9 eV, EC-1.35 eV, EC-2.6 eV, and EC-3.28 eV in all three samples. This indicates no new traps were observed in the laser-assisted MOCVD GaN sample. Overall, the trap concentrations in the laser-assisted MOCVD sample were ∼2× higher than the optimal low-growth-rate sample, but this is primarily due to the increase in gallium vacancy EC-2.6 eV and carbon-related EC-3.28 eV trap concentrations. The EC-0.9 eV trap concentration was ∼2× higher in the laser-assisted sample, so proton irradiation experiments were conducted to identify the physical source of this level. The results indicated this was a native point defect likely related to gallium interstitials. Overall, this study shows that the laser-assisted MOCVD growth method is promising for future thick, high-quality GaN epilayers after further growth optimizations.