Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 24(15), p. 5657, 2023

DOI: 10.3390/rs15245657

Links

Tools

Export citation

Search in Google Scholar

Machine Learning in the Hyperspectral Classification of Glycaspis brimblecombei (Hemiptera Psyllidae) Attack Severity in Eucalyptus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Assessing different levels of red gum lerp psyllid (Glycaspis brimblecombei) can influence the hyperspectral reflectance of leaves in different ways due to changes in chlorophyll. In order to classify these levels, the use of machine learning (ML) algorithms can help process the data faster and more accurately. The objectives were: (I) to evaluate the spectral behavior of the G. brimblecombei attack levels; (II) find the most accurate ML algorithm for classifying pest attack levels; (III) find the input configuration that improves performance of the algorithms. Data were collected from a clonal eucalyptus plantation (clone AEC 0144—Eucalyptus urophilla) aged 10.3 months old. Eighty sample evaluations were carried out considering the following severity levels: control (no shells), low infestation (N1), intermediate infestation (N2), and high infestation (N3), for which leaf spectral reflectances were obtained using a spectroradiometer. The spectral range acquired by the equipment was 350 to 2500 nm. After obtaining the wavelengths, they were grouped into representative interval means in 28 bands. Data were submitted to the following ML algorithms: artificial neural networks (ANN), REPTree (DT) and J48 decision trees, random forest (RF), support vector machine (SVM), and conventional logistic regression (LR) analysis. Two input configurations were tested: using only the wavelengths (ALL) and using the spectral bands (SB) to classify the attack levels. The output variable was the severity of G. brimblecombei attack. There were differences in the hyperspectral behavior of the leaves for the different attack levels. The highest attack level shows the greatest distinction and the highest reflectance values. LR and SVM show better accuracy in classifying the severity levels of G. brimblecombei attack. For the correct classification percentage, the RL and SVM algorithms performed better, both with accuracy above 90%. Both algorithms achieved F-score values close to 0.90 and above 0.8 for Kappa. The entire spectral range guaranteed the best accuracy for both algorithms.