Published in

Wiley Open Access, Energy & Environmental Materials, 2024

DOI: 10.1002/eem2.12699

Links

Tools

Export citation

Search in Google Scholar

Interface Engineering on Constructing Physical and Chemical Stable Solid‐State Electrolyte Toward Practical Lithium Batteries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Solid‐state lithium batteries (SSLBs) with high safety have emerged to meet the increasing energy density demands of electric vehicles, hybrid electric vehicles, and portable electronic devices. However, the dendrite formation, high interfacial resistance, and deleterious interfacial reactions caused by solid–solid contact between electrode and electrolyte have hindered the commercialization of SSLBs. Thus, in this review, the state‐of‐the‐art developments in the rational design of solid‐state electrolyte and their progression toward practical applications are reviewed. First, the origin of interface instability and the sluggish charge carrier transportation in solid–solid interface are presented. Second, various strategies toward stabilizing interfacial stability (reducing interfacial resistance, suppressing lithium dendrites, and side reactions) are summarized from the physical and chemical perspective, including building protective layer, constructing 3D and gradient structures, etc. Finally, the remaining challenges and future development trends of solid‐state electrolyte are prospected. This review provides a deep insight into solving the interfacial instability issues and promising solutions to enable practical high‐energy‐density lithium metal batteries.