Published in

Life Science Alliance, Life Science Alliance, 1(7), p. e202302192, 2023

DOI: 10.26508/lsa.202302192

Links

Tools

Export citation

Search in Google Scholar

Meta-analysis of dispensable essential genes and their interactions with bypass suppressors

Journal article published in 2023 by Carles Pons ORCID, Jolanda van Leeuwen ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Genes have been historically classified as essential or non-essential based on their requirement for viability. However, genomic mutations can sometimes bypass the requirement for an essential gene, challenging the binary classification of gene essentiality. Such dispensable essential genes represent a valuable model for understanding the incomplete penetrance of loss-of-function mutations often observed in natural populations. Here, we compiled data from multiple studies on essential gene dispensability inSaccharomyces cerevisiaeto comprehensively characterize these genes. In analyses spanning different evolutionary timescales, dispensable essential genes exhibited distinct phylogenetic properties compared with other essential and non-essential genes. Integration of interactions with suppressor genes that can bypass the gene essentiality revealed the high functional modularity of the bypass suppression network. Furthermore, dispensable essential and bypass suppressor gene pairs reflected simultaneous changes in the mutational landscape ofS. cerevisiaestrains. Importantly, species in which dispensable essential genes were non-essential tended to carry bypass suppressor mutations in their genomes. Overall, our study offers a comprehensive view of dispensable essential genes and illustrates how their interactions with bypass suppressors reflect evolutionary outcomes.