IOP Publishing, Japanese Journal of Applied Physics, 6(62), p. 060902, 2023
DOI: 10.35848/1347-4065/acdbf3
Full text: Unavailable
Abstract This report demonstrates an ultrawide bandgap β-Ga2O3 flash memory for the first time. The flash memory device realized on heteroepitaxial β-Ga2O3 film had TiN as the floating gate (FG) and Al2O3 as tunneling and gate oxides. A memory window of > 4 V was obtained between the programmed and erased states of the device. The memory states showed negligible degradation in threshold voltage (VTH) even after 5000 s, exhibiting excellent nonvolatility. Furthermore, the device showed a VTH of ∼0.3 V after applying a 17 V programming voltage pulse, indicating the potential of the electron trapping phenomenon in the FG to achieve enhancement-mode operation in β-Ga2O3 transistors for high-power and logic applications. This study would provide insights for future oxide electronics integrating β-Ga2O3 memory.