Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Pharmaceutics, 1(16), p. 121, 2024

DOI: 10.3390/pharmaceutics16010121

Links

Tools

Export citation

Search in Google Scholar

Design and Synthesis of Multi-Functional Ligands through Hantzsch Reaction: Targeting Ca2+ Channels, Activating Nrf2 and Possessing Cathepsin S Inhibitory, and Antioxidant Properties

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This work relates to the design and synthesis of a series of novel multi-target directed ligands (MTDLs), i.e., compounds 4a–l, via a convenient one-pot three-component Hantzsch reaction. This approach targeted calcium channel antagonism, antioxidant capacity, cathepsin S inhibition, and interference with Nrf2 transcriptional activation. Of these MTDLs, 4i emerged as a promising compound, demonstrating robust antioxidant activity, the ability to activate Nrf2-ARE pathways, as well as calcium channel blockade and cathepsin S inhibition. Dihydropyridine 4i represents the first example of an MTDL that combines these biological activities.