Published in

Wiley, Advanced Materials, 2023

DOI: 10.1002/adma.202209950

Links

Tools

Export citation

Search in Google Scholar

Direct Integration of Perovskite Solar Cells with Carbon Fiber Substrates

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIntegrating photovoltaic devices onto the surface of carbon‐fiber‐reinforced polymer substrates should create materials with high mechanical strength that are also able to generate electrical power. Such devices are anticipated to find ready applications as structural, energy‐harvesting systems in both the automotive and aeronautical sectors. Here, the fabrication of triple‐cation perovskite n–i–p solar cells onto the surface of planarized carbon‐fiber‐reinforced polymer substrates is demonstrated, with devices utilizing a transparent top ITO contact. These devices also contain a “wrinkled” SiO2 interlayer placed between the device and substrate that alleviates thermally induced cracking of the bottom ITO layer. Devices are found to have a maximum stabilized power conversion efficiency of 14.5% and a specific power (power per weight) of 21.4 W g−1 (without encapsulation), making them highly suitable for mobile power applications.