Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Energy Materials, 31(13), 2023

DOI: 10.1002/aenm.202301391

Links

Tools

Export citation

Search in Google Scholar

Fundamental Understanding of Structural Reconstruction Behaviors in Oxygen Evolution Reaction Electrocatalysts

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractTransition metal‐based oxyhydroxides (MOOH) derived from the irreversible structural reconstruction of precatalysts are often acknowledged as the real catalytic species for the oxygen evolution reaction (OER). Typically, the reconstruction‐derived MOOH would exhibit superior OER activity compared to their directly synthesized counterparts, despite being fundamentally similar in chemistry. As such, structural reconstruction has emerged as a promising strategy to boost the catalytic activity of electrocatalysts. However, the in‐depth understanding of the origin of the superior OER activity of reconstructed materials still remains ambiguous, which significantly hinders the further developments of highly efficient electrocatalysts based on structural reconstruction chemistry. In this review, a comprehensive overview of the structural reconstruction behaviors in the reported reconstruction‐derived electrocatalysts is provided and the intrinsic chemical and structural origins of their high efficiency toward OER are unveiled. The fundamentals of structural reconstruction mechanisms, along with the recommended characterization techniques for the understanding of the dynamic structural reconstruction process and analyzing the structure of real catalytic species are also interpreted. Finally, in view of structural reconstruction chemistry, the potential perspectives to facilitate the design and synthesis of highly efficient and durable OER electrocatalyst are presented.