Published in

MDPI, CivilEng, 4(4), p. 1071-1082, 2023

DOI: 10.3390/civileng4040058

Links

Tools

Export citation

Search in Google Scholar

Utilization of Plastic Waste in Road Paver Blocks as a Construction Material

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

India is confronted with the substantial issue of plastic debris due to the absence of an efficient waste management infrastructure. Recycled plastic has the potential to enhance various construction materials, such as roofing tiles, paving blocks, and insulation. The aforementioned materials possess notable attributes such as high strength, low weight, and exceptional resistance to extreme temperatures and humidity. The objective of this study is to ascertain feasible alternatives for manufacturing road paver blocks utilizing plastic waste (Polyethene terephthalate (PET)), and M-sand (stone dust). Three variations of a discarded plastic cube measuring 150 mm × 150 mm × 150 mm were prepared for the experiment. The experimental findings indicated that a ratio of 1:4 was determined to be the most effective in achieving the desired level of compressive strength. I-section road and brick paver blocks were produced as an alternative to the traditional concrete ones. Compressive strength tests were performed on I-sections and brick paver blocks, revealing that the 1:4 mix ratio exhibited the highest average compressive strength for both materials. The findings indicated that including plastic waste positively impacted the compressive strength of the I-sections and brick paver blocks. Additionally, the quality grading of these materials was evaluated using an ultrasonic pulse velocity test. The ultrasonic pulse velocity test results demonstrated a high-quality grading for the I-sections and brick paver blocks. Scanning electron microscopy (SEM) tests assessed the microstructural behavior and performance. The results of this study demonstrate that incorporating plastic waste in combination with M-sand can effectively improve the mechanical characteristics of composite materials, rendering them viable for use in construction-related purposes.