Published in

Nature Research, Communications Physics, 1(6), 2023

DOI: 10.1038/s42005-023-01194-0

Links

Tools

Export citation

Search in Google Scholar

Charge transfer driving interfacial reconstructions in perovskite oxide heterostructures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCharge transfer in perovskite oxide heterostructures could break the delicate balance among charge, spin, orbital and lattice order at the interface, producing exotic phenomena that cannot be observed in bulk materials. Here, opposite interfacial charge transfer directions are observed in SrIrO3/NdNiO3 and SrIrO3/LaNiO3 3d/5d perovskite heterostructures. This is accompanied with an inverse change of Ni eg orbital polarization and Ni-O pd hybridization across the interface, by stretching/compressing the out-of-plane Ni-O bond in the opposite internal electrical field due to the opposite electron transfer direction. These interfacial reconstructions finally bring about a manipulation on the transport and magnetic characteristics. This work reveals that A site cation in perovskite heterostructures could be a knob to control the interfacial charge transfer direction, and the 3d/5d perovskite interfaces are excellent platform to study the complex interplay between various order parameters and stimulate novel interfacial effects.