Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2(524), p. 1692-1709, 2023

DOI: 10.1093/mnras/stad1977

Links

Tools

Export citation

Search in Google Scholar

Observational predictions for Thorne–Żytkow objects

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Thorne–Żytkow objects (TŻO) are potential end products of the merger of a neutron star with a non-degenerate star. In this work, we have computed the first grid of evolutionary models of TŻOs with the MESA stellar evolution code. With these models, we predict several observational properties of TŻOs, including their surface temperatures and luminosities, pulsation periods, and nucleosynthetic products. We expand the range of possible TŻO solutions to cover $3.45 \lesssim \rm {\log \left(T_{eff}/K\right)}\lesssim 3.65$ and $4.85 \lesssim \rm {\log \left(L/L_{⊙ }\right)}\lesssim 5.5$. Due to the much higher densities our TŻOs reach compared to previous models, if TŻOs form we expect them to be stable over a larger mass range than previously predicted, without exhibiting a gap in their mass distribution. Using the GYRE stellar pulsation code we show that TŻOs should have fundamental pulsation periods of 1000–2000 d, and period ratios of ≈0.2–0.3. Models computed with a large 399 isotope fully coupled nuclear network show a nucleosynthetic signal that is different to previously predicted. We propose a new nucleosynthetic signal to determine a star’s status as a TŻO: the isotopologues $\mathrm{^{44}Ti} \rm {O}_2$ and $\mathrm{^{44}Ti} \rm {O}$, which will have a shift in their spectral features as compared to stable titanium-containing molecules. We find that in the local Universe (∼SMC metallicities and above) TŻOs show little heavy metal enrichment, potentially explaining the difficulty in finding TŻOs to-date.