Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 1(954), p. 63, 2023

DOI: 10.3847/1538-4357/ace698

Links

Tools

Export citation

Search in Google Scholar

SRGeJ045359.9+622444: A 55 Minute Period Eclipsing AM Canum Venaticorum Star Discovered from a Joint SRG/eROSITA + ZTF Search

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract AM Canum Venaticorum (AM CVn) systems are ultracompact binaries where a white dwarf accretes from a helium-rich degenerate or semidegenerate donor. Some AM CVn systems will be among the loudest sources of gravitational waves for the upcoming Laser Interferometer Space Antenna; yet the formation channel of AM CVns remains uncertain. We report the study and characterization of a new eclipsing AM CVn, SRGeJ045359.9+622444 (hereafter, SRGeJ0453), discovered from a joint Spektrum-Roentgen-Gamma (SRG) Extended Roentgen Survey with an Imaging Telescope Array (eROSITA) mission and Zwicky Transient Facility program to identify cataclysmic variables (CVs). We obtained optical photometry to confirm the eclipse of SRGeJ0453 and determine the orbital period to be P orb = 55.0802 ± 0.0003 min . We constrain the binary parameters by modeling the high-speed photometry and radial-velocity curves and find M donor = 0.044 ± 0.024M and R donor = 0.078 ± 0.012R . The X-ray spectrum is approximated by a power-law model with an unusually flat photon index of Γ ∼ 1 previously seen in magnetic CVs with SRG/eROSITA, but verifying that the magnetic nature of SRGeJ0453 requires further investigation. Optical spectroscopy suggests that the donor star of SRGeJ0453 could have initially been a He star or a He white dwarf. SRGeJ0453 is the ninth eclipsing AM CVn system published to date, and its lack of optical outbursts have made it elusive in previous surveys. The discovery of SRGeJ0453 using joint X-ray and optical surveys highlights the potential for discovering similar systems in the near future.