Published in

Springer, Journal of Plant Growth Regulation, 12(42), p. 7547-7563, 2023

DOI: 10.1007/s00344-023-11031-x

Links

Tools

Export citation

Search in Google Scholar

New PEO-IAA-Inspired Anti-Auxins: Synthesis, Biological Activity, and Possible Application in Hemp (Cannabis Sativa L.) Micropropagation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAuxins play an important role in plant physiology and are involved in numerous aspects of plant development, such as cell division, elongation and differentiation, fruit development, and phototropic response. In addition, through their antagonistic interaction with cytokinins, auxins play a key role in the regulation of root growth and apical dominance. Thanks to this capacity to determine plant architecture, natural and synthetic auxins have been successfully employed to obtain more economically advantageous plants. The crosstalk between auxins and cytokinins determines plant development and thus is of particular importance in the field of plant micropropagation, where the ratios between these two phytohormones need to be tightly controlled to achieve proper rooting and shoot generation. Previously reported anti-auxin PEO-IAA, which blocks auxin signalling through binding to TIR1 receptor and inhibiting the expression of auxin-responsive genes, has been successfully used to facilitate hemp micropropagation. Herein, we report a set of new PEO-IAA-inspired anti-auxins capable of antagonizing auxin responses in vivo. The capacity of these compounds to bind to the TIR1 receptor was confirmed in vitro by SPR analysis. Using DESI-MSI analysis, we evaluated the uptake and distribution of the compounds at the whole plant level. Finally, we characterized the effect of the compounds on the organogenesis of hemp explants, where they showed to be able to improve beneficial morphological traits, such as the balanced growth of all the produced shoots and enhanced bud proliferation.