Published in

Oxford University Press, Human Reproduction, 7(38), p. 1412-1423, 2023

DOI: 10.1093/humrep/dead105

Links

Tools

Export citation

Search in Google Scholar

Bi-allelic variants inINSL3andRXFP2cause bilateral cryptorchidism and male infertility

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSTUDY QUESTIONWhat is the impact of variants in the genes INSL3 (Insulin Like 3) and RXFP2 (Relaxin Family Peptide Receptor 2), respectively, on cryptorchidism and male infertility?SUMMARY ANSWERBi-allelic loss-of-function (LoF) variants in INSL3 and RXFP2 result in bilateral cryptorchidism and male infertility, whereas heterozygous variant carriers are phenotypically unaffected.WHAT IS KNOWN ALREADYThe small heterodimeric peptide INSL3 and its G protein-coupled receptor RXFP2 play a major role in the first step of the biphasic descent of the testes, and variants in the INSL3 and RXFP2 genes have long been implicated in inherited cryptorchidism. However, only one single homozygous missense variant in RXFP2 has clearly been linked to familial bilateral cryptorchidism, so the effects of bi-allelic variants in INSL3 and heterozygous variants in both genes on cryptorchidism and male infertility remain unclear.STUDY DESIGN, SIZE, DURATIONExome data of 2412 men from the MERGE (Male Reproductive Genomics) study cohort including 1902 infertile men with crypto-/azoospermia, of whom 450 men had a history of cryptorchidism, were screened for high-impact variants in INSL3 and RXFP2.PARTICIPANTS/MATERIALS, SETTING, METHODSFor patients with rare, high-impact variants in INSL3 and RXFP2, detailed clinical data were collected and the testicular phenotype was determined. Genotyping of family members was performed to analyse the co-segregation of candidate variants with the condition. Immunohistochemical staining for INSL3 in patient testicular tissue and measuring serum INSL3 concentration was performed to analyse the functional impact of a homozygous loss-of-function variant in INSL3. For a homozygous missense variant in RXFP2, its impact on the protein’s cell surface expression and ability to respond to INSL3 in CRE reporter gene assay was determined.MAIN RESULTS AND THE ROLE OF CHANCEThis study presents homozygous high-impact variants in INSL3 and RXFP2 and clearly correlates these to bilateral cryptorchidism. Functional impact of the identified INSL3 variant was demonstrated by absence of INSL3-specific staining in patients’ testicular Leydig cells as well as undetectable blood serum levels. The identified missense variant in RXFP2 was demonstrated to lead to reduced RXFP2 surface expression and INSL3 mediated receptor activation.LIMITATIONS, REASONS FOR CAUTIONFurther investigations are needed to explore a potential direct impact of bi-allelic INSL3 and RXFP2 variants on spermatogenesis. With our data, we cannot determine whether the infertility observed in our patients is a direct consequence of the disruption of a possible function of these genes on spermatogenesis or whether it occurs secondarily due to cryptorchidism.WIDER IMPLICATIONS OF THE FINDINGSIn contrast to previous assumptions, this study supports an autosomal recessive inheritance of INSL3- and RXFP2-related bilateral cryptorchidism while heterozygous LoF variants in either gene can at most be regarded as a risk factor for developing cryptorchidism. Our findings have diagnostic value for patients with familial/bilateral cryptorchidism and additionally shed light on the importance of INSL3 and RXFP2 in testicular descent and fertility.STUDY FUNDING/COMPETING INTEREST(S)This study was carried out within the frame of the German Research Foundation (DFG) funded by Clinical Research Unit ‘Male Germ Cells: from Genes to Function’ (DFG, CRU326). Research at the Florey was supported by an NHMRC grant (2001027) and the Victorian Government Operational Infrastructure Support Program. A.S.B. is funded by the DFG (‘Emmy Noether Programme’ project number 464240267). The authors declare no conflict of interest.TRIAL REGISTRATION NUMBERN/A.