Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 5696(306), p. 669-671, 2004

DOI: 10.1126/science.1103527

Links

Tools

Export citation

Search in Google Scholar

Hydrated electron dynamics : from clusters to bulk.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The electronic relaxation dynamics of size-selected (H 2 O) n /(D 2 O) n [25 ≤ n ≤ 50] clusters have been studied with time-resolved photoelectron imaging. The excess electron ( \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(e_{c}^{-}\) \end{document} ) was excited through the \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(e_{c}^{-}(p){←}e_{c}^{-}(s)\) \end{document} transition with an ultrafast laser pulse, with subsequent evolution of the excited state monitored with photodetachment and photoelectron imaging. All clusters exhibited p-state population decay with concomitant s-state repopulation (internal conversion) on time scales ranging from 180 to 130 femtoseconds for (H 2 O) n and 400 to 225 femtoseconds for (D 2 O) n ; the lifetimes decrease with increasing cluster sizes. Our results support the “nonadiabatic relaxation” mechanism for the bulk hydrated electron ( \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(e_{aq}^{-}\) \end{document} ), which invokes a 50-femtosecond \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(e_{aq}^{-}(p){→}e_{aq}^{-}(s^{{\dagger}})\) \end{document} internal conversion lifetime.